A Case of Diffuse Infiltrative Hepatocellular Carcinoma with Marked Response to Sorafenib Treatment Evidenced by 18F-FDG PET/MRI

Elgin Özkan1, Burak Demir1, Diğdem Kuru Öz2, Yüksel Ürün3, Nuriye Özlem Küçük1

1Ankara University Faculty of Medicine, Department of Nuclear Medicine, Ankara, Türkiye
2Ankara University Faculty of Medicine, Department of Radiology, Ankara, Türkiye
3Ankara University Faculty of Medicine, Department of Internal Medicine, Division of Medical Oncology, Ankara, Türkiye

Abstract
A 73-year-old woman with known diagnosis of chronic hepatitis B infection referred for 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and magnetic resonance imaging (MRI) after detection of a liver mass with 9 cm diameter in contrast enhanced CT. However, 18F-FDG PET/CT and MRI revealed diffuse infiltrating hepatocellular carcinoma lesions other than previously defined mass. After 9 months of Sorafenib treatment serum alpha fetoprotein levels dropped from 60,500 ng/mL to 801 ng/mL. Later 18F-FDG PET/MRI was performed for evaluation of response to treatment and revealed marked response to treatment.

Keywords: Hepatocellular carcinoma, positron emission tomography, fluorodeoxyglucose, magnetic resonance imaging, sorafenib

Öz
Bilinen kronik hepatit B enfeksiyonu tanı ile kontrastlı bilgisayarlı tomografide (BT) karaciğerde 9 cm boyutlu kitle saptanması üzerine 18F-florodeoksiglukoz pozitron emisyon tomografisi/BT (18F-FDG PET/BT) ve manyetik rezonans görüntüleme (MRG) için yönlendirildi. Ancak, 18F-FDG PET/BT ve MRG'de önceki tanımlanan kitle dışında parankimde diffüz infiltratif hepatosellüler karsinom lezyonları saptandı. Doku ayılk sorafenib tedavisini takiben serum alpha fetoprotein değerleri 60.500 ng/mL'den 801 ng/mL'ye kadar genildi. Tedavi yanıtı için çekilen 18F-FDG PET/MRG'de de belirgin tedavi yanıtı gösterildi.

Anahtar kelimeler: Hepatosellüler karsinom, pozitron emisyon tomografisi, florodeoksiglukoz, manyetik rezonans görüntüleme, sorafenib

Address for Correspondence: Burak Demir, MD, Ankara University Faculty of Medicine, Department of Nuclear Medicine, Ankara, Türkiye
Phone: +90 312 595 64 45 E-mail: 4burakfe@gmail.com ORCID ID: orcid.org/0000-0002-0966-9988
Received: 26.01.2024 Accepted: 03.03.2024 Epub: 16.04.2024

Copyright © 2024 The Author. Published by Galenos Publishing House on behalf of the Turkish Society of Nuclear Medicine. This is an open access article under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND) International License.
Figure 1. A 73-year-old woman with hepatitis B infection presented with abdominal pain and dynamic liver computed tomography (CT) revealed a 9 cm lesion in the liver (A, orange arrow). The patient’s serum alpha fetoprotein (AFP) levels were measured as high as 60,500 ng/mL. The patient was referred for 18F-fluorodeoxyglucose positron emission tomography/CT (18F-FDG PET/CT) and magnetic resonance imaging (MRI) for staging of probable hepatocellular carcinoma (HCC) diagnosis. However, 18F-FDG PET/CT and MRI revealed diffuse infiltrating HCC lesions in both lobes of liver in addition to the previously defined 9 cm mass. The diffuse infiltrating lesions (blue arrows) were hyperintense in axial T2-weighted MRI (B, C) images and showed intense 18F-FDG uptake with maximum standardized uptake value (SUV$_{max}$): 12.5 as visualized in the maximum intensity projection (MIP) (D), axial PET/CT MRI fusion images (E, F). Additionally, the previously defined 9 cm lesion (orange arrows) had very mild 18F-FDG uptake. Sorafenib treatment was initiated after the detection of advanced disease.

Figure 2. After 9 months of sorafenib treatment AFP levels were measured as low as 801 ng/mL. Post-treatment integrated 18F-FDG PET/MRI revealed that diffuse infiltrating lesions had largely regressed. A few 18F-FDG-avid lesions (green arrows) with maximum SUV$_{max}$: 10.9 including tumor thrombosis in right hepatic vein, could be visualized in MIP (A), axial T2-weighted MRI (E, F), axial PET/MRI fusion (B, C, D) images. There was no significant difference in MRI findings of large mass as it had a minimal decrease in diameter to 8 cm and is still mildly 18F-FDG-avid (B-orange arrow).
HCC is one of the most prevalent cancers in the world (1,2). In advanced HCC cases treatment choices can be limited to systemic treatments such as tyrosine-kinase receptor inhibitors, vascular endothelial growth factor inhibitors and immunotherapy agents (3,4,5). As one of the most commonly used tyrosine-kinase inhibitors, sorafenib can increase overall survival in HCC patients (6). It has been shown that pretreatment 18F-FDG PET/CT parameters have a prognostic value in HCC patients treated with sorafenib but intensity of 18F-FDG uptake may not predict response to sorafenib treatment (7,8). In this case the lesions previously undetected in CT were demonstrated with both components of PET/MRI. Additionally, 18F-FDG PET revealed different characteristics of these two pathologies, one being solitary non-FDG avid mass, other being intensely FDG-avid infiltrating lesions. Furthermore, more 18F-FDG avid infiltrating lesions had a marked response to sorafenib while the other large solid mass was merely exhibiting stable disease. An effective response to sorafenib is rare, and in this case both PET and MRI revealed dramatic response of infiltrating lesions to treatment, consistent with clinical findings. In conclusion, PET can reveal metabolic characteristics of HCC lesions and usage of high soft tissue contrast of MRI can help identify corresponding lesions in liver. This could make the usage of PET/MRI valuable for diagnosis, staging and as demonstrated above evaluation of response to treatment.

Ethics

Informed Consent: Written informed consent was obtained from the patient.

Authorship Contributions

Conflict of Interest: No conflicts of interest were declared by the authors.

Financial Disclosure: The authors declare that this study has received no financial support.

References